| Reg. No. : | 10 = |   |  |  |
|------------|------|---|--|--|
|            |      | + |  |  |

# Question Paper Code: 23849

# B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

#### Fifth Semester

## Mechanical Engineering

### ME 2301 – THERMAL ENGINEERING

(Common to Mechanical Engineering (Sandwich))

(Regulations 2008)

(Also common to PTME 2301 – Thermal Engineering for B.E. (Part-Time) Fourth Semester – Mechanical Engineering – Regulations 2009)

. Time: Three hours

Maximum: 100 marks

(Steam tables, Refrigeration tables, Psychrometry charts and Mollier diagram can be used)

Answer ALL questions.

# PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Name any four assumptions made for air standard cycle analysis.
- 2. Sketch the dual cycle on p-V and T-s co-ordinates.
- 3. List the main parts of a lubrication system.
- 4. What is known as pre ignition? State its effect.
- 5. Define critical pressure ratio. Calculate the value of critical pressure ratio for saturated and supersaturated steam.
- 6. What is the effect of supersaturated flow in steam nozzle?
- 7. List the effects of inter-cooling in a multi stage compression process.
- 8. Give the classification of compressor based on movement of piston.
- 9. What is the difference between Wet compression and Dry compression?
- 10. Enumerate the components of cooling load estimate.

- 11. (a) In an engine working on Dual cycle, the temperature and pressure at the beginning of the cycle are 90°C and 1 bar respectively. The compression ratio is 9. The maximum pressure is limited to 68 bar and total heat supplied per kg of air is 1750 kJ. Determine:
  - (i) Pressure and temperature at all salient points
  - (ii) Air standard efficiency
  - (iii) Mean effective pressure.

(16)

Or

(b) (i) Consider an air standard cycle in which the air enters the compressor at 1 bar and 20°C. The pressure of air leaving the compressor is 3.5 bar and the temperature at turbine inlet is 600°C.

Determine per kg of air:

- (1) Efficiency of the cycle. (3)
- (2) Heat supplied to air (2)
- (3) Work available at the shaft. (2)
- (4) Heat rejected in the cooler, and (3)
- (5) Temperature of air leaving the turbine. (3) For air  $\gamma = 1.4$  and  $C_p = 1.005$  kJ/kg K.
- (ii) The efficiency of an Otto cycle is 60% and  $\gamma = 1.5$ . What is the compression ratio? . (3)
- 12. (a) Discuss the construction and working principle of a four stroke engine with sketch. (16)

Or

- (b) Explain the construction and working principle of Battery coil ignition system with neat sketch. (16)
- 13. (a) (i) Mention the types of nozzles you know. Where are these used? (8)
  - (ii) From first principles, prove that maximum discharge per unit area in a steam nozzle at the throat is given by the expression (8)

$$\frac{m_{\max}}{A} = \left[ 2 \left( \frac{p_1}{v_1} \right) \left( \frac{2}{n+1} \right)^{\frac{n+1}{n-1}} \right]^{1/2}.$$

Or

| al III | (b) | The              | e following data relate to a single stage impulse turbine :                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|--------|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|        |     | Ste              | eam velocity = 600 m/s;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|        |     | Bla              | ade speed = $250 \text{ m/s}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|        |     | No               | zzle angle = 20°;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
|        |     | Bla              | ade outlet angle = 25°;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|        |     | Neg<br>tur       | glecting the effect of friction, calculate the work developed by<br>bine for the steam flow rate of 20 kg/s. Also calculate the axial th<br>the bearings.                                                                                                                                                                                                                                                                                                                                                                               | the                    |
| 14.    | (a) | 80<br>req<br>Ass | single-acting two-stage air compressor deals with 4 m $^3$ /min of air 13 bar and 15°C with a speed of 250 rpm. The delivery pressur bar. Assuming complete intercooling. Find the minimum policied by the compressor and the bore and stroke of the compressume a piston speed of 3 m/s, mechanical efficiency of 75% umetric efficiency of 80% per stage. Assume the polytropic indepensation in both the stages to be n = 1.25 and neglect clearance.                                                                                | re is<br>ower<br>ssor. |
|        |     |                  | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|        | (b) | Exp<br>with      | plain with neat sketch the construction and working of Roots blo<br>h two lobe and three lobe rotor and Vane type compressor.                                                                                                                                                                                                                                                                                                                                                                                                           | ower<br>(16)           |
| 15.    | (a) | (i)              | What are the properties of a good refrigerant?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4)                    |
|        |     | (ii)             | An Ammonia refrigerator produces 30 tons of ice at 0°C in a da 24 hours. The temperature range in the compressor is from 25° C $-15$ °C. The vapour is dry saturated at the end of compress Assume a COP of 60% of Theoretical value. Calculate the porrequired to drive the compressor. Assume latent heat of ice 335kJ/kg. For properties of NH <sub>3</sub> , refer the table below. Temperature (°C) $h_f$ $h_g$ $S_f$ $S_g$ kJ/kg kJ/kg kJ/kg kJ/kg $25$ $298.9$ $1465.8$ $1.124$ $5.039$ $-15$ $112.34$ $1426.5$ $0.4572$ $5.549$ | C to<br>ion.           |
|        |     |                  | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|        | (b) | (i)              | An office is to be air-conditioned for 50 staff when the outd conditions are 30°C DBT and 75% RH if the quantity of air suppl is 0.4m <sup>3</sup> /min/person find the following:                                                                                                                                                                                                                                                                                                                                                      | oor<br>lied            |
| 4.     |     |                  | (1) Capacity of the cooling coil in tones of refrigeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4)                    |
|        |     |                  | (2) Capacity of the heating coil in kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4)                    |
|        |     |                  | (3) Amount of water vapour removed per hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4)                    |
|        |     |                  | Assume that required air inlet conditions are 20°C DBT and 6 RH. Air is conditioned first by cooling and dehumidifying and the by heating.                                                                                                                                                                                                                                                                                                                                                                                              | 0%<br>nen              |
|        | 7 . | (ii)             | Describe the factors that affect human comfort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                    |
|        |     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |

